

 2020 - 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public Page 1 of 6 www.netacad.com

Lab - Python Classes Review (Instructor Version)

Instructor Note: Red font color or gray highlights indicate text that appears in the instructor copy only.

Answers: 3.4.6 Lab - Explore Python Classes

Objectives

Part 1: Launch the DEVASC VM

Part 2: Review Functions, Methods, and Classes

Part 3: Define a Function

Part 4: Define a Class with Methods

Part 5: Review the circleClass.py Script

Background / Scenario

In this lab, you review Python methods, functions, and classes. You then create a class and instantiate it
several times with different values. Finally, you review the Circle class example used in the course.

Required Resources

 1 PC with operating system of your choice

 Virtual Box or VMWare

 DEVASC Virtual Machine

Instructions

Part 1: Launch the DEVASC VM

If you have not already completed the Lab - Install the Virtual Machine Lab Environment, do so now. If you
have already completed that lab, launch the DEVASC VM now.

Part 2: Review Functions, Methods, and Classes

In this part, you review the difference between functions and methods. You also review the basic structure of
a class.

Step 1: What is a function?

As a quick review, recall that a function is an independently defined block of code that is called by name. In
the following example, the function called functionName is defined and then called. Notice that it is an
independent block of code. It is not encapsulated in any other code.

Define the function

def functionName:

 ...blocks of code...

Call the function

functionName()

https://itexamanswers.net/3-4-6-lab-explore-python-classes-answers.html

Lab - Python Classes Review

 2020 - 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public Page 2 of 6 www.netacad.com

Step 2: What is a method?

A method, however, cannot be called by itself. It is dependent on the object in which it is defined. In the
following example, the class className is declared and three methods are defined. The class is instantiated
and then each method of the class is called.

Note: This pseudo-code does not explicitly show the class constructor __init__ method with the self variable.
This special method is reviewed below.

Define the class

class className

 # Define a method

 def method1Name

 ...blocks of code

 # Define another method

 def method2Name

 ...blocks of code

 # Define yet another method

 def method3Name

 ...blocks of code

Instantiate the class

myClass = className()

Call the instantiation and associated methods

myClass.method1Name()

myClass.method2Name()

myClass.method3Name()

Part 3: Define a Function

In this part, you will define a function with arguments and then call the function.

a. Open a new text file and save it as myCity.py in your ~/labs/devnet-src/python directory.

b. Define the function myCity with the argument city for city name. When the function is called with a
specified city name, it prints a statement that includes the city name.

def myCity(city):

 print("I live in " + city + ".")

c. Call the function myCity passing it different values for city, as shown in the following examples.

myCity("Austin")

myCity("Tokyo")

myCity("Salzburg")

d. Save and run the myCity.py file. You should get the following output.

devasc@labvm:~/labs/devnet-src/python$ python3 myCity.py

I live in Austin.

Lab - Python Classes Review

 2020 - 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public Page 3 of 6 www.netacad.com

I live in Tokyo.

I live in Salzburg.

devasc@labvm:~/labs/devnet-src/python$

Part 4: Define a Class with Methods

In this part, you will define a class, use the __init__() function to define a method for the class, and then
create instances of the class.

Step 1: Define and then instantiate a class with the __init__() method.

A Python class is used to create objects that have properties and methods. All Python classes typically
include an explicitly defined __init__() function, although you can create a class without defining one. The
__init__() function is always initiated when a class is instantiated. Instantiating a class creates a copy of the
class which inherits all the class variables and methods.

Note: Although it is sometimes called the __init__() function, it is dependent on the class. Therefore, it is
technically a method.

a. Open a new text file and save it as myLocation.py.

b. Define a class with the name Location and press Enter. If you are working is VS Code, then the text
editor should automatically indent four spaces.

class Location:

 |<-- cursor should now be here

c. Next, define the __init__() function. By convention, the first parameter is called self. The self parameter
is a reference to the current instance of the class itself and is used to access variables that belong to the
entire class. The __init__() function is then assigned any variables the entire class needs. In the following
example, define a name and country variable. Press Enter twice and then backspace twice to the left
margin.

 def __init__(self, name, country):

 self.name = name

 self.country = country

|<-- cursor should now be here

d. You can test that this class is now ready to use. Instantiate the class by assigning it a name of your
choice. Then specify the values for the required class variables name and country. The following
example uses the Location class to instantiate a class called loc with a name and country specified by
you. Use your name and country.

loc = Location("Your_Name", "Your_Country")

e. To verify that the instantiated loc class now has your assigned name and country, add print statements to
your script.

print(loc.name)

print(loc.country)

f. To verify the loc is indeed a class, add the following print statement that will print the data type for loc.

print(type(loc))

g. Save and run your script. You should get the following output except with your supplied name and
country.

devasc@labvm:~/labs/devnet-src/python$ python3 myLocation.py

Your_Name

Lab - Python Classes Review

 2020 - 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public Page 4 of 6 www.netacad.com

Your_Country

<class '__main__.Location'>

devasc@labvm:~/labs/devnet-src/python$

Step 2: Add a method to the Location class.

Now add a method to the Location class that can be called by a programmer when the class is instantiated.
In this simple example, create a method to print the statement, “My name is [name] and I live in [country].”

a. Delete the code the begins with the instantiation of the loc class. Your myLocation.py script should now
only include the following code.

class Location:

 def __init__(self, name, country):

 self.name = name

 self.country = country

b. With your cursor at the end of the line self.country = country, press the Enter key twice and backspace
once.

 self.country = country

 |<--Your cursor should be here

c. Define a new method call myLocation and assigned it the self parameter so that the new method can
access the variables defined in the __init__() function. Then, define a print statement to print out the
string specified above.

Note: The print statement should be on one line.

 def myLocation(self):

 print("Hi, my name is " + self.name + " and I live in " +

self.country + ".")

d. Press the Enter key twice and backspace twice.

e. Save and run your script to make sure there are no errors. You will not get any output yet.

Step 3: Instantiate the Location class multiple times and call the myLocation method.

Now that you have a class, you can instantiate it as many times as you like providing different values for the
class variables each time.

a. Add the following code to your myLocation.py script to instantiate Location class and call the method.
You do not need to add the comments.

First instantiation of the class Location

loc1 = Location("Tomas", "Portugal")

Call a method from the instantiated class

loc1.myLocation()

b. Save and run your script. You should get the following output.

devasc@labvm:~/labs/devnet-src/python$ python3 myLocation.py

Hi, my name is Tomas and I live in Portugal.

devasc@labvm:~/labs/devnet-src/python$

c. Add two more instantiations and then a fourth one where you specify the name and values for your_loc.

loc2 = Location("Ying", "China")

loc3 = Location("Amare", "Kenya")

Lab - Python Classes Review

 2020 - 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public Page 5 of 6 www.netacad.com

loc2.myLocation()

loc3.myLocation()

your_loc = Location("Your_Name", "Your_Country")

your_loc.myLocation()

d. Save and run your script. You should get the following output.

devasc@labvm:~/labs/devnet-src/python$ python3 myLocation.py

Hi, my name is Tomas and I live in Portugal.

Hi, my name is Ying and I live in China.

Hi, my name is Amare and I live in Kenya.

Hi, my name is Your_Name and I live in Your_Country.

devasc@labvm:~/labs/devnet-src/python$

Step 4: Review the complete myLocation.py script.

If you had any errors with your script, review the following example which includes all the code used in this
part.

Define a class with variables for **name** and **country**.

Then define a method that belongs to the class. The method’s

purpose is to print a sentence that uses the variables.

class Location:

 def __init__(self, name, country):

 self.name = name

 self.country = country

 def myLocation(self):

 print("Hi, my name is " + self.name + " and I live in " +

self.country + ".")

First instantiation of the Location class

loc1 = Location("Tomas", "Portugal")

Call a method from the instantiated class

loc1.myLocation()

Three more instantiations and method calls for the Location class

loc2 = Location("Ying", "China")

loc3 = Location("Amare", "Kenya")

loc2.myLocation()

loc3.myLocation()

your_loc = Location("Your_Name", "Your_Country")

your_loc.myLocation()

Part 5: Review the circleClass.py Script

The example in the course shows how to create a class that calculates the circumference of a circle and then
print out the calculated value. There are a few things to note in this script.

 The class includes three methods including the __init__() function. The __init__() function provides a
method for entering the radius value.

Lab - Python Classes Review

 2020 - 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public Page 6 of 6 www.netacad.com

 The circumference method calculates the circumference and returns the value storing it in the
circumferenceValue variable.

 The printCircumference method prints a string. Notice that the variables are casted as strings with the
str() function. Otherwise, the print statement would throw an error because self.radius and
myCircumference are not strings.

 The Circle class instantiated three times.

Given a radius value, print the circumference of a circle.

Formula for a circumference is c = pi * 2 * radius

class Circle:

 def __init__(self, radius):

 self.radius = radius

 def circumference(self):

 pi = 3.14

 circumferenceValue = pi * self.radius * 2

 return circumferenceValue

 def printCircumference(self):

 myCircumference = self.circumference()

 print ("Circumference of a circle with a radius of " + str(self.radius)

+ " is " + str(myCircumference))

First instantiation of the Circle class.

circle1 = Circle(2)

Call the printCircumference for the instantiated circle1 class.

circle1.printCircumference()

Two more instantiations and method calls for the Circle class.

circle2 = Circle(5)

circle2.printCircumference()

circle3 = Circle(7)

circle3.printCircumference()
End of document

